
Lessons Learned from 20 Years of Implementing LSI Applications

Roger Bradford 1

Maxim Analytics, Great Falls, VA 22066 USA

Abstract
This paper summarizes lessons learned, over a period of 20 years, from implementing

information systems employing the technique of latent semantic indexing (LSI). The data

presented is drawn from 63 projects undertaken over the period 1999 through 2019. Over that

period the projects increased in scale from collections of hundreds of thousands of documents

to ones involving hundreds of millions of documents. They also increased in sophistication,

from simple search and retrieval systems to ones focused on information discovery and

automated alerting. This paper summarizes some of the key developments in technology and

techniques that enabled those advances in the size and sophistication of the applications. The

objective of this paper is to share insights gained from these past two decades of system

implementation experience.

Keywords 1
Latent Semantic Indexing, LSI, LSI applications, LSA, lessons learned

1. Latent Semantic Indexing

The technique of latent semantic indexing

(LSI) was invented at Bellcore in the late 1980s

[1]. The original intent was to provide improved

capabilities for retrieval of text. The technique

has, however, proven to be useful in analysis of a

wide variety of information types [2, 3].

As applied to a collection of documents, the

LSI algorithm consists of the following primary

steps [1, 4]:

1. A term-document matrix is formed, and

(typically) local and global weights are applied

to the elements of this matrix.

2. Singular value decomposition (SVD) is

used to reduce this matrix to a product of three

matrices, one of which is diagonal in the

singular values of the original matrix.

3. Dimensionality is reduced by deleting all

but the k largest singular values, together with

the corresponding columns of the other two

matrices.

4. This truncation process provides a basis

for generating a k-dimensional vector space.

DESIRES 2021 - 2nd International Conference on Design of

Experimental Search & Information REtrieval Systems,

September 15--18, 2021, Padua, Italy
EMAIL: rbradford@cox.net

ORCID: 0000-0003-1750-3125

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Both terms and documents are represented by

k-dimensional vectors in this vector space.

5. New queries, terms, and documents can

be represented in the space by a process known

as folding-in, which extrapolates from known

vectors.

6. The semantic similarity of any two

objects represented in the space is reflected by

the proximity of their representation vectors,

generally using a cosine measure.

Experience from a broad range of academic,

industrial, and governmental testing has shown

that proximity in an LSI space is a remarkably

good proxy for semantic relatedness as judged by

humans [5].

Early commercial applications of LSI included

identification of people with specific expertise

[6], detection of spam in e-mails [3] and essay

scoring [7]. Over time, the technique found wide

application in areas such as patent search and

analysis [8], résumé matching [9], customer

survey analysis [10], and fraud detection [11]. It

became the dominant paradigm in electronic

document discovery [12]. More recently it has

been used in bioinformatics discovery [13],

recommender systems [14], and social media

analysis [15].

2. Structure of the Paper

This paper summarizes lessons learned from

63 information system implementation projects

that the author took part in over the period 1999

through 2019. Each of these projects employed

LSI as a key technical component. The systems

addressed a wide range of applications for both

commercial and government customers.

Over this 20-year period, the systems

increased significantly in both size and

sophistication.2 The earliest systems utilized the

conceptual search, clustering, and categorization

functionality of LSI to implement relatively

simple capabilities for such tasks as customer

survey analysis and matching of résumés with job

openings. Extrapolating from experience gained,

these fundamental capabilities subsequently were

applied in a more abstract fashion to higher-level

considerations in applications such as fraud

detection and patent prior art analysis. Successive

refinement of tools and techniques eventually

enabled advanced applications incorporating

features such as novel information detection and

secure information sharing.

Section 3 of this paper provides a brief

overview of the principal improvements in

technologies and techniques that enabled solution

of progressively larger and more complex

problems using LSI. Section 4 describes several

implementation principles that have proven useful

in building LSI-based information systems.

Section 5 summarizes some particularly

interesting results and surprises that were

encountered in the course of building these

systems. Section 6 concludes with brief

comments on capabilities being incorporated into

more recent LSI applications.

3. Enabling Advances in Technology
and Technique

3.1. Scaling

Computers in the early days of LSI were not

well-suited for SVD computation and large-scale

2 Other projects undertaken in this time frame applied LSI to data

other than text. However, only systems that focused on text are

addressed here.

matrix manipulation, which limited the scale of

LSI applications. However, hardware

improvements over the past twenty years have

completely changed this situation [16]. Figure 1

shows the dramatic reduction in the observed

index creation times in nine comparable projects

over the period 2002-2016. The times shown are

those required to build an LSI index for one

million documents (averaging several kilobytes in

size) at 300 dimensions, using computers

typically employed in applications in the given

years.

Figure 1. Decline in time required to create an LSI
space for a 1 million document collection

The early points on the curve correspond to

index creation times from projects using clusters

of processors. Subsequent points are from

projects primarily employing mid-range servers.

Of note, however, the last point shown is for a

laptop computer.

The dramatic decline in time required to create

an LSI index progressively enabled a wider

variety of applications. At the present time, LSI

applications involving collections of tens of

millions of documents are routine and multiple

applications have been implemented that

encompass full LSI indexing of hundreds of

millions of documents.

Advances in technology enabled

improvements not only in scale, but also in the

fidelity of the generated LSI spaces in

representing real-world semantic associations.

For LSI, as collection size increases, the larger

number of occurrences of individual terms

diminishes the effects of idiosyncratic

occurrences of those terms in specific documents.

This improves overall representational fidelity, as

shown in Figure 2. The graph displays the

variation in mean reciprocal rank (MRR) of 250

pairs of terms having known real-world semantic

association3, as a function of the size of the

collection. As indicated by the trend line, the

increase in representational fidelity with

collection size is approximately logarithmic. Of

note is the fact that over 80% of all published

literature on LSI deals with collection sizes

smaller than the initial point shown (17 thousand

documents) and 97% deals with collection sizes

less than the second point shown (93 thousand

documents).

Figure 2. Increase in semantic representation
fidelity with collection size

Several of the developed applications included

the identification of specific patterns of activities

and relationships as one of the system objectives.

In many cases, the distinctions between patterns

of interest and normal patterns were quite subtle.

In general, the larger the data collection, the more

effective LSI was in providing indicators of the

existence of patterns of interest. Over time, the

continuing growth in the size of collections that

could be addressed facilitated implementation of

increasingly sophisticated analytic operations.

3.2. Parameter Optimization

In the construction of an LSI space, there are a

number of parameter choices that must be made;

for example: number and identity of stopwords,

required number of occurrences for a term to be

included in the processing, and the number of

dimensions for the LSI space. The choices that

are made can have a significant impact on overall

performance in a specific application [17, 18]. As

an example, Figure 3 shows the variation in mean

reciprocal rank of 250 pairs of semantically-

related terms as a function of the number of

3 Over the years, such simple and direct metrics for quality of an LSI
space proved to be very useful in tuning implemented systems. Over

a wide range of applications, evaluations using such metrics

dimensions chosen, for a collection4 of five

million documents [19].

Figure 3. Variation in term similarity ranking as a
function of chosen dimensionality

The performance of the systems discussed here

benefited greatly from the cumulative experience

gained over 20 years regarding choice of effective

parameters. In nearly all of the systems

developed, at least some testing of parameter

choices was carried out that was designed to

optimize application performance. This is

addressed further in section 4.

3.3. Indexing of Named Entities

In most text applications, named entities

constitute items of particular significance. For

example, names of people are of fundamental

importance in fraud detection. One of the most

important factors contributing to the success of

the programs described here was the fact that

nearly all of them employed entity extraction and

markup as a preprocessing step prior to creating

the LSI spaces involved. Typically, names of

persons, locations, and organizations were

extracted, but in some cases more entity types

were treated. In the LSI preprocessing,

occurrences of a name such as John Kennedy were

marked up as p_john_kennedy_p, and similarly

for other entity types. (This markup was stripped

out prior to presenting results to users.)

With classical LSI, users can create queries of

the form: What terms are most closely associated

with a given term? In contrast, with entity

markup prior to creating the space, an interface

can be implemented that allows users to enter

queries such as: What people are most closely

associated with a given entity or activity? Such

queries are much more natural in most

correlated well with both performance on application-specific tests
and with human judgment.
4 These are not the same documents as those in the collection

referenced in Figure 2.

applications. The implementation of capabilities

to effectively execute those types of queries was a

major factor contributing to both operational

efficiency and user satisfaction for the systems

described here.

Even in the limited number of cases where

entities themselves were not of prime importance

for users, entity markup prior to creating the LSI

space was of great importance for improving the

representational fidelity of the space. In most text

collections, failure to treat named entities as

textual units will create vast numbers of spurious

associations. For example, the common English

given name John may be a component of

hundreds of distinct person names. Classical LSI

will conflate all of the occurrences of John,

generating erroneous correlations in the LSI space

produced. In many current LSI applications, the

text collections being addressed contain millions

to tens of millions of named entities. Failing to

treat these entities as textual units when building

an LSI space for such applications would yield

millions of distortions of relations in the space.

3.4. Dealing with Phrases

Many LSI applications involve retrieval of

information of interest based on queries formed

by users. It is well-known that, in many instances,

the use of phrases in queries can significantly aid

in expressing a user’s information needs.

Historically, one frequently-cited criticism of

classical LSI was that it did not provide a viable

mechanism for dealing with phrases in queries. It

was felt that use of phrases required identification

of all phrases of interest prior to creating the LSI

space, so that those phrases could be treated as

terms in the indexing process. This is a problem

in that there are a very large number of phrases in

a text collection of any significant size. Most of

the candidate phrases will never be employed by

users. Moreover, indexing of most phrases will

not significantly improve the representational

fidelity of the LSI space.

We eventually found a two-part solution to this

problem. In order to incorporate phrases that

would improve the representational fidelity of the

space, we employed the following procedure:

• Using a highly productive phrase

generation technique, such as RAKE [20],

generate a large set of candidate phrases for the

collection of interest.

• Create an initial LSI index for the

collection, with no attempt to extract phrases.

• For each candidate phrase, create an

approximate LSI vector by taking a weighted

average of the representation vectors for the

documents that contain that phrase. (The

folding-in technique of classical LSI applied to

terms [1]).

• Compare the approximate vector for the

phrase with a vector created by simply

combining the terms of the candidate phrase as

an LSI query.

• Create a final LSI space, treating as

textual units the candidate phrases which have

the greatest distance (smallest cosine) between

the approximation vector and the query vector.

In order to ensure that users could employ

arbitrary phrases in searches, we developed a

technique that allowed use of phrases in LSI

queries even for LSI spaces where phrases have

not been indexed. The technique is described in

detail in [21]. Table 1 shows the results from

applying this technique in searching a collection

of 1.6 million news articles using the query rare

earth element.

The column labeled NONE shows the ranked

query results (closest terms) when no phrase

processing is applied. In this case, since the terms

rare and element occur in diverse contexts, the

term earth has the most significant effect on the

results. The results are completely dominated by

celestial references; clearly not what a user would

desire.

The column labeled PRE-PROCESSED shows

the results for the same collection when rare earth

element was marked up as a phrase and treated as

a textual unit in creating the LSI space. The

results are as expected: primarily names of rare

earth elements and those of people and

organizations associated with processing of rare

earth elements.

Table 1
Comparison of pre-indexed and ad hoc phrase
processing

The column labeled AD HOC shows the

results when the term folding approach of [21] is

applied to the LSI space where there was no initial

phrase processing. The results are quite close to

those obtained for the case where the phrase was

indexed (60% agreement for the top ten terms in a

collection comprising 1.5 million terms). The

adoption of this ad hoc phrase query process in

systems described here resulted in a major

improvement in user satisfaction.

3.5. User Aids

Over the years, with the dramatic growth in the

size of the text collections being addressed, it

became increasingly important to provide aids for

users in areas such as creating queries, identifying

topics, interpreting results, and automating

repetitive tasks. The semantic comparison

capabilities of LSI allowed a wide variety of such

aids to be implemented. Some aids were very

simple to implement, but still yielded significant

gains in operational efficiency and user

satisfaction. For example, a popup display of the

most closely associated terms when a user moused

over a given term was of great help in determining

the meaning of newly-encountered terms such as

acronyms and technical terminology. Most of the

users of the systems were knowledge workers, but

typically did not have technical backgrounds.

Providing them with immediate contextual

information regarding technical terms greatly

aided them in understanding the material that they

were working with.

Over time, such aids became more complex.

One that proved very popular was novelty

detection. Within some systems, tracking

capabilities were implemented to provide an

indication of what information a given user

already was aware of. This included, for example,

monitoring what documents (or other text objects)

that the user had previously displayed, saved,

printed, or incorporated into work products.

Then, in response to a query from that user, the

results could be displayed not just in relevance

order, but in the order of those results that were

relevant but at the same time were least similar to

those previously seen. In many applications there

is significant redundancy in the content of items

collected. In applications with high information

redundancy, the novelty detection feature greatly

improved both efficiency of operations and user

satisfaction.

Other user aids that proved to enhance both

operational efficiency and user satisfaction

included:

• Generation of document summaries

tailored to users’ interests.

• Automated generation of graphs showing

relationships among entities.

• Automated tracking of topic threads in

long documents and sets of documents.

3.6. Secure Information Sharing

The representation for a given term in an LSI

space is a single point in a vector space that is

derived from what may be hundreds of

occurrences, even for a relatively rare term.

Similarly, the representation for a given document

is derived from large numbers of occurrences of

multiple terms. Even in classical LSI spaces, it is

impossible to work backwards to reconstruct the

actual wording of documents corresponding to

extant document vectors. With slight

modifications to the index creation process, it can

be made impossible to determine even which

words occurred in which documents. These

characteristics enable the use of information in a

secure background mode.

In many applications there is relevant data

available that cannot be directly shared with users

for proprietary, legal, or privacy reasons. In such

cases, these sensitive documents can be processed

so that the results of operations in the LSI space

for the application can be enhanced by the

contextual implications of the sensitive data,

without risk of disclosure of specific sensitive

data items themselves.

Experience in using LSI in a secure

background mode has shown that even a small

number of documents used in this manner can

have great leverage. In some representative cases,

data treated in background mode has constituted

less than 1% of the total data being examined.

Nevertheless, significant gains in application

efficiency still have been achieved [22].

4. Beneficial Implementation
Practices

Over the years, a number of LSI

implementation practices evolved that

significantly improved the quality and efficiency

of the systems developed.

Perhaps the most significant implementation

approach adopted was to use analyses in the LSI

spaces themselves to select effective values for all

of the key processing parameters for an

application. Typically, we used the following

approach:

1. Build an initial LSI space from application-

relevant data, using standard parameter values

and processing choices.

2. Using a small, representative test set, carry

out analyses in this initial space to determine

the most effective values for the parameters

and choices.

3. Re-build the LSI spaces using those

parameters and processing choices.

For example, using a test set representative of

an application being addressed, it is possible to

make an effective choice of the number of

dimensions to employ in creating the LSI space

for that application. As long as the initial space

employs a number of dimensions higher than

optimal, the requisite tests can be carried out, and

an optimal value found, with vectors from a single

initial LSI space.

For other parameter choices, a new LSI space

must be created to test each value. For example,

in many applications, terms are only included in

the LSI processing if they occur at least M times

in the collection and/or in at least N different

documents. Pruning the term set in this manner

often can significantly improve the

representational fidelity of the space. A separate

LSI space must be generated in order to test each

prospective pruning value. However, only a

limited range of values must be tried. In most of

the applications here, values of M and N in the

range of two to five turned out to be optimal. It

should be noted that pruning typically was not

applied to named entities. In many applications,

the occurrence of a name may be of significance

even if it occurs only once.

The dramatic reduction in the time required to

create LSI spaces made it increasingly feasible to

create trial LSI spaces for optimization testing,

even for parameters that required multiple such

spaces to be created. For very large collections,

optimization analyses typically can be carried out

sufficiently effectively using LSI spaces built

from a randomly selected subset of the overall

collection.

We also employed iterative refinement of LSI

spaces to mitigate the effects of errors in training

data for categorization applications. This

approach led to significant improvement in

categorization accuracy. The technique has broad

applicability for noise mitigation in LSI

applications [23].

The computer employed to carry out analytic

operations in an LSI space does not have to be the

same computer on which the LSI space is created.

It often proved useful to create LSI spaces on a

large server and then distribute the vector spaces

created there to smaller devices for use. We also

found that distribution of shared LSI spaces can

be a powerful enabler for collaborative work.

Sometimes a conceptual search will retrieve

results that do not appear to be appropriate. Users

may find this disconcerting. However, these often

can be the most important results – ones that

indicate a gap in user understanding of some

aspect of the problem at hand. In multiple systems

we found it useful to highlight terms and passages

in retrieved documents based on semantic

similarity to the user’s query. Users found this

useful in trying to determine why a surprising

result was obtained.

Other implementation principles that proved

effective included:

• Duplicate and near-duplicate documents

in a collection artificially magnify associated

term relationships. LSI comparisons between

documents of a collection can be used very

effectively to eliminate redundant documents.

• For some applications, removal of

“boilerplate” text can greatly enhance

performance. For example, many legal

documents contain formulaic blocks of text

that appear on many documents. Appearance

of such repeated text creates undesired

associations (i.e., ones that are not related to

the content of the documents).

• In many instances it is useful to use LSI

similarity comparisons to decompose long

documents into conceptually cohesive

segments, which are then indexed as individual

items. This makes it much easier to identify

information on subsidiary topics.

• For large applications, parallel processing

approaches such as MapReduce and more

recent techniques can be employed very

effectively for text preprocessing tasks.

• In analyses involving the LSI vectors of

large collections, use of GPUs for the cosine

comparisons can provide a dramatic speedup

compared to using typical CPUs.

• In many applications, entity-driven

analytic processes can be far more efficient

than document-driven ones.

• Monitoring of user actions often can

provide training data that can be employed to

refine the LSI spaces employed and to yield

improved accuracy of analytic operations.

One particularly effective use of this

techniques was in continuously refining

textual representations of user interests.

5. Interesting Results and Surprises

Over the past 20 years there were a number of

aspects of LSI that either came as a surprise or

were unexpectedly useful.

When the work described here began, it was

generally believed that LSI did not scale well.

Academic papers of the time estimated that the

time required to build an LSI space grew as at

least the square of the number of documents

addressed.5 We were pleasantly surprised that

actual measurements showed that the growth was

close to linear [16].

Indications of semantic similarity as provided

by LSI turned out to be a remarkably good proxy

for similarity judgments generated by people. In

2007 a review of 30 studies compared LSI and

human judgment in 16 real-world text processing

tasks ranging from synonym matching to

psychological assessment. LSI performed as well

as, or better than, humans in 51% of the cases [5].

In more recent, work, covering over 100 studies

and 37 applications, LSI performed as well as, or

better than, humans in 56% of the cases [24]. Of

significance is the fact that all of these studies

employed straightforward implementations of

LSI. None of the advanced techniques described

in this paper were used in any of the analyzed

studies. Moreover, the number of documents used

to create the spaces was very small - having a

median value of only 1700. With larger

collections, LSI performance in the reviewed

studies likely would have been significantly

higher. In the 63 information systems considered

here, in the few cases where human and LSI

performance could be directly compared, LSI

results typically were as good as, or in some cases

somewhat better than, average human

performance.

One surprise was the huge effect that treating

named entities as textual units produced. For

collections of text such as news articles, the

5 Early estimates tended to overlook one or more of three key factors.
First, LSI requires calculation of only the first few hundred singular

values and associated vectors, not a complete SVD of the entire term-

document matrix. Second, term-document matrices are extremely

representational fidelity of the spaces produced

was dramatically improved. Having the entities

available also set us on a path of implementing

ever more sophisticated entity-driven analysis

capabilities. In most applications, entity-driven

processes turned out to be far more efficient that

document-driven ones.

Many of the applications addressed were

complicated by the fact that the text items of

interest contained multiple variants of names of

individuals. These differences came from

misspellings, phonetic renderings, transliteration

differences, and other sources. Because of these

variations, many relationships of interest were

suppressed. One of the early features that we

implemented was a name variant analyzer. For

any given name it combined eight methods for

generating candidate variants and then used

comparisons in the LSI space to select the most

relevant ones. This capability turned out to be

significantly more effective than the best

competing commercial product. Recall was two

to three times greater and confidence ratings for

candidate equivalent names turned out to be much

more reliable than anticipated [25].

We were surprised by how easy it was to

implement ad hoc phrase processing in LSI

spaces. (We also were embarrassed by how long

it took for us to realize how to do it).

It was interesting to observe how easily and

effectively word senses could be disambiguated

using clustering techniques in the LSI spaces [26].

This allowed markup of occurrences of

polysemous words in much the same way as was

done for named entities, as was described in

section 3.3. The disambiguation can be carried

out in a trial space and then the marked-up senses

of polysemous words treated as separate textual

units in creating the final space to be employed.

Typically, a point of diminishing returns will be

reached after disambiguating only a few

thousands to tens of thousands of words. For

some applications, word sense disambiguation of

general terms did not result in major performance

increases. Where disambiguation was of great

value, however, was in dealing with person

names. In many applications there may be

hundreds of people with the same name and

disambiguation is essential. As with phrases, this

name resolution feature can be incorporated into

sparse. For large collections, often only one in ten thousand to one in
one hundred thousand entries is non-zero. Finally, the time required

to read and preprocess the text being indexed generally is greater than

the time required to carry out the SVD.

an application either in bulk during preprocessing

or in an ad hoc fashion at query time.

Applications involving the secure background

mode of dealing with sensitive data often involved

very small amounts of such data (sometimes less

than .01% of the total amount of data). In a

number of cases, the extent to which such very

small amounts of auxiliary data could improve

results was quite remarkable.

Some of the early applications involved text

that was produced by optical character

recognition (OCR) equipment. LSI turned out to

be surprisingly effective in dealing with the many

errors produced by OCR devices of that era. In

one categorization application, performance

degradation only began to be detectable when the

OCR error rate reached a level where two out of

every three words were corrupted [27].

In cross-lingual applications, it turned out that

many languages can be represented in a single LSI

space without serious performance degradation.

In one case, transitioning from two languages

represented in one LSI space to 13 languages

resulted in a decline in cross-lingual similarity

comparisons of only a few percent [28].

LSI turned out to provide an elegant solution

for combining results from diverse information

systems when employing federated queries [29].

Combining text with other data types

(especially relational, geographic, and image

data) often generated unique analytic insights.

The combination of such data also supported

implementation of highly effective visual analytic

interfaces.

6. Recent Developments

Although much has been accomplished over

the past twenty years, there are still exciting

activities underway involving LSI. Many of these

involve implementation of ideas that were

originally suggested in a basic form some years

ago, but are just now being incorporated into real-

world applications. Key examples include:

• Combined analysis of text and relational

data [29].

• Implementation of semantic vector space

equivalents of Boolean operators [33] and

negation [34].

6 The components of a typical LSI vector comprise hundreds of

indications of derived relationships. In general, the basis vectors of

an LSI space closely relate to concepts, or mixtures of such, within

the collection of text being addressed. An LSI vector is thus a

• Enhancement of machine translation

capabilities, especially for technical and other

specialized subject matter [38].

• Functionality based on analysis of

individual LSI vector components.6 [30, 31,

32].

• Use of randomized SVD to dramatically

reduce the computational load when

addressing very large collections [35, 36, 37].

• Extensive use of LSI in discovery

applications, particularly in the area of

bioinformatics [12].

• Facilitation of human-robot interaction

[39, 40].

• Various AI-related efforts [41,42].

7. Acknowledgements

I would like to thank the engineers, scientists,

software developers, and others from SAIC,

Content Analyst Company, and Agilex

Technologies Inc. who participated in building the

systems reviewed here over the past twenty years.

Those individuals took the techniques described

here for improving LSI and transformed them

from nascent concepts into working code and

deployed systems.

8. References

[1] George W. Furnas, et al. Information

retrieval using a singular value

decomposition model of latent semantic

structure, in: Proceedings of the 11th Annual

International ACM SIGIR Conference on

Research and Development in Information

Retrieval (SIGIR 88), May 1988, Grenoble,

France, pp. 465–480.

[2] Susan T. Dumais, Latent Semantic Analysis.

Annual Review of Information Science and

Technology, 38(1), 2004, pp. 188-230,

doi:https://asistdl.onlinelibrary.wiley.com/d

oi/abs/10.1002/aris.1440380105.

[3] Jerome R. Bellegarda, Latent Semantic

Mapping: Principles & Applications.

Morgan & Claypool, 2007 doi:

https://doi.org/10.2200/S00048ED1V01Y20

0609SAP003.

complex and information-rich object. To compare two such objects

using a single number (such as a cosine) thus ignores a large amount
of potentially useful information.

https://doi.org/10.2200/S00048ED1V01Y200609
https://doi.org/10.2200/S00048ED1V01Y200609

[4] Thomas K. Landauer, Danielle S.

McNamara, Simon Dennis, and Walter

Kintsch, eds. 2007. Handbook of Latent

Semantic Analysis. Lawrence Erlbaum

Associates.

[5] Roger Bradford, Comparability of LSI and

human judgment in text analysis tasks, in:

Proceedings, Applied Computing

Conference, September 28-30, 2009, Athens,

Greece, pp. 359-366.

[6] Susan T. Dumais, George W. Furnas,

Thomas K. Landauer, Scott Deerwester, and

Richard Harshman, Using latent semantic

analysis to improve access to textual

information, in: Proceedings of the SIGCHI

Conference on Human Factors in Computing

Systems, May 1988, Washington, DC, pp.

281-285.

[7] Tristan Miller, Essay assessment with latent

semantic analysis, Journal of Educational

Computing Research, 29(4), (2003) 495-512.

[8] Lexis-Nexis, The Evolution of Semantic

Search on the Web, 2009. URL:

https://www.lexisnexis.co.uk/pdf/brochures/

totalpatent-whitepaper.pdf.

[9] Jean Isson, Unstructured Data Analytics:

How to Improve Customer Acquisition,

Customer Retention, and Fraud Detection

and Prevention, John Wiley & Sons, 2018.

[10] Seraina Anagnostopoulou, et al., The impact

of online reputation on hotel profitability,

International Journal of Contemporary

Hospitality Management September 20,

2019. doi: 10.1108/IJCHM-03-2019-0247.

[11] Wei Dong, et al., The detection of fraudulent

financial statements: an integrated language

model, in: Proceeding of the 19th Pacific-

Asia Conference on Information Systems

(PACIS 2014), Article 383.

[12] Roger Bradford, An overview of information

discovery using latent semantic indexing, in:

Proceedings, International Conference on

Computer Science, Applied Mathematics

and Applications (ICCSAMA 2017), June 30

-July 1, 2017, Berlin, Germany, pp. 153-164.

[13] Hongyu Chen, et al., Effective use of latent

semantic indexing and computational

linguistics in biological and biomedical

applications, Frontiers in Physiology, 4: 8.

(2013) doi: 10.3389/fphys.2013.00008.

[14] Nguyen Ngoc Chan, Walid Gaaloul, and

Samir Tata, A web service recommender

system using vector space model and latent

semantic indexing, in: Proceedings, 2011

IEEE International Conference on Advanced

Information Networking and Applications,

March 22-25, 2011, Biopolis, Singapore, pp.

602-609.

[15] T. Hashimoto, T. Kuboyama and B.

Chakraborty, Temporal awareness of

changes in afflicted people's needs after East

Japan Great Earthquake, in: Proceedings,

IEEE International Conference of IEEE

Region 10 (TENCON 2013), 1-6. doi:

10.1109/TENCON.2013.6719012.

[16] Roger Bradford, Implementation techniques

for large-scale latent semantic indexing

applications, in: Proceedings of the 20th

ACM International Conference on

Information and Knowledge Management

(CIKM), October 2011, Glasgow Scotland,

pp. 339-344.

[17] Zhiqiang Cai et al, Impact of corpus size and

dimensionality of LSA spaces from

Wikipedia articles on AutoTutor answer

evaluation, in: Proceedings, 11th

International Conference on Educational

Data Mining (EDM), Jul 16-20, 2018,

Raleigh, NC, pp.127-136.

[18] Thomas K. Landauer and Susan T. Dumais,

A solution to Plato's problem: The latent

semantic analysis theory of acquisition,

induction, and representation of knowledge.

Psychological Review, 104(2), (1997) 211-

240.

[19] Roger Bradford, An empirical study of

required dimensionality for large-scale latent

semantic indexing applications, in:

Proceedings of the 17th ACM conference on

Information and knowledge management

(CIKM 2008), October 19-23, 2008, Napa

Valley, CA, pp. 153-162. doi:

https://doi.org/10.1145/ 1458082.1458105.

[20] Stuart Rose, Dave Engel, Nick Cramer, and

Wendy Cowley, Automatic keyword

extraction from individual documents. Text

Mining: Applications and Theory 1 (2010):

1-20.

[21] Roger Bradford, Incorporating ad hoc

phrases in LSI queries, in: Proceedings, 6th

International Conference on Knowledge

Discovery and Information Retrieval,

October 21-24, 2014, Rome, Italy, pp. 61-70.

[22] Roger Bradford, Exploiting sensitive

information in background mode using latent

semantic indexing, in: Proceedings of the

Sixth Workshop on Link Analysis,

Counterterrorism and Security, SIAM Data

Mining Conference, April 24-26 2008,

Atlanta, Georgia.

[23] Roger Bradford and John Pozniak, A

systematic approach to design of a text

categorizer, in; Proceedings, 2016 IEEE

International Conference on Systems, Man,

and Cybernetics (SMC), October 9-12, 2016,

Budapest, Hungary, pp. 509-514.

[24] Roger Bradford, Comparability of LSI and

human judgment in text analysis tasks – an

update. Draft, Mar 2, 2021.

[25] Roger Bradford, Use of latent semantic

indexing to identify name variants in large

data collections, in: Proceedings, 2013 IEEE

International Conference on Intelligence and

Security Informatics (ISI 2013), Seattle,

WA, 27-32. doi: 10.1109/ISI.2013.6578781.

[26] Roger Bradford, Word sense

disambiguation, 2008. Patent No. 7,415,462,

Filed January 20, 2006, Issued August 19,

2009.

[27] Anthony Zukas and Robert Price, Document

categorization using latent semantic

indexing, in: Proceedings, Fifth Annual

Symposium on Document Image

Understanding Technology (SDIUT), April,

2003, Greenbelt, MD, pp. 87-91.

[28] Roger Bradford and John Pozniak,

Combining modern machine translation

software with LSI for cross-lingual

information processing, in: Proceedings,

11th International Conference on

Information Technology: New Generations

(ITNG), April 7-9, 2014, Las Vegas, NV, 65-

72. doi: 10.1109/ITNG.2014.52.

[29] Roger Bradford, Federated queries and

combined text and relational data, 2006.

Patent Application No. 11434749, Filed May

17, 2006.

[30] Weizhong Zhu, and Chaomei Chen,

Storylines: Visual exploration and analysis in

latent semantic spaces. Computers &

Graphics, 31(3) (2007): 338-349.

[31] Ricardo Olmos, et al, Transforming selected

concepts into dimensions in latent semantic

analysis, Discourse Processes, 51(5-6)

(2004): 494-510.

[32] Anna Sidorova, Nicholas Evangelopoulos,

Joseph S. Valacich, and Thiagarajan

Ramakrishnan, Uncovering the intellectual

core of the information systems discipline.

MIS Quarterly (2008): 467-482.

[33] Preslav Nakov, Getting better results with

latent semantic indexing, in: Proceedings of

the Students Presentations at the 12th

European Summer School in Logic,

Language and Information (ESSLLI),

August 6-18, Birmingham, UK, pp. 156-166.

[34] Dominic Widdows, Orthogonal negation in

vector spaces for modelling word-meanings

and document retrieval, in: Proceedings of

the 41st Annual Meeting of the Association

for Computational Linguistics, July 7, 2003,

Volume 1, pp. 136-143.

[35] Nathan Halko, Per-Gunnar Martinsson, and

Joel Tropp, Finding structure with

randomness: probabilistic algorithms for

constructing approximate matrix

decompositions, SIAM Review, 2(3) (2011):

217-288.

[36] Ming Gu, Subspace iteration randomization

and singular value problems, SIAM Journal

on Scientific Computing, 37(3) (2015):

1139-1173.

[37] Per-Gunnar Martinsson, Randomized

methods for matrix computations, in: The

Mathematics of Data, IAS/Park City

Mathematics Series, 25(4) 2018, pp. 187-

231.

[38] Roger Bradford, Machine translation using

vector space representations, 2010. Patent

No. 7,765,098, Filed April 24, 2006, Issued

July 27, 2010.

[39] Phoebe Liu, Dylan Glas, Takayuki Kanda,

and Hiroshi Ishiguro, Data-driven HRI:

Learning social behaviors by example from

human–human interaction, IEEE

Transactions on Robotics, 32, no. 4, (2016):

988-1008.

[40] Francesco Agostaro, et al., A conversational

agent based on a conceptual interpretation of

a data driven semantic space, in:

Proceedings, Congress of the Italian

Association for Artificial Intelligence,

September 21–23, 2005, Milan, Italy, pp.

381-392.

[41] Robert Speer, Catherine Havasi, and Henry

Lieberman, AnalogySpace: Reducing the

dimensionality of common-sense

knowledge, in: Proceedings of the Twenty-

Third AAAI Conference on Artificial

Intelligence, Jul 13, 2008, vol. 8, pp. 548-

553.

[42] Trevor Cohen, Brett Blatter, and Vimla Patel,

Simulating expert clinical comprehension:

Adapting latent semantic analysis to

accurately extract clinical concepts from

psychiatric narrative, Journal of Biomedical

Informatics 41, no. 6 (2008): 1070-1087.

